From Monolithic to Microservices to
Serverless

Davide Taibi

CIoWEE - Cloud and Web Engineering
http://research.tuni.fi/clowee

17.05.2020

“:‘/

7

7 '

' Venezuela
LV ARUE NN o

RR 3 m‘; p
2 “Gabdo | 'Eﬁﬂ?ﬁﬁé@ =

,\\E‘z‘, Democratica |
L Sgcanioory Tanzania

(

'IJ Tampere University

Software Systems Evolution

T OO

cee]|
see]

| — JOUO

Physical Servers Virtual Servers Containers Serverless

Waterfall

@davidetaibi

Computing

JU0
., UJuy

(

- J Tampere University

Software Architecture Evolution

1990s and earlier
Coupling

2000s 2010s

Pre-SOA (monolithic)
Tight coupling

$ TAMPERE UNIVERSITY OF TECHNOLOGY

Traditional SOA

Looser coupling

Microservices
Decoupled

o P
; e ©)
: : ! 5 3 RN Y A4 o0 N:
\ ; \ : 4 " @0 = o e
E Ly i o asl, O

CERTIN Y 0) © .
- v : Jor °]

oy o @)
R RE Y Y9 . a0 %
0@ o e,

D.Taibi, V.Lenarduzzi, C.Pahl, A.Janes. Microservices Architectural Styles: Agile or not Agile?
XP 2017

(

- J Tampere University

Software Architecture Evolution

1990s and earlier 2000s 2010s 2015s
l'l e-SO A (lll”“““(llil) vl.l '.l(”(i”ll'.ll SOA .\“ll(l\'l‘l \'il es Function as a Service
Fight coupling Looser coupling Decoupled Highly Decoupled

@davidetaibi

(

- J Tampere Unive=*-
Why?

Gartner's 2017 Hype Cycle for ICT

expectations
Rapid Mobile App Development

Robotic Process Automation Offerings
(Gateway Technology Services)

Smart City Framework
Integrated Systems: Hyperconvergence
Bimodal IT

Internet of Things

Digital Commerce Platforms
Software-Defined Data Center

Disaster Recovery as a Service

Virtual Desktop Infrastructure

Enterprise Mobility Management Suites
Solid-State Arrays

Unified Communications
and Collaboration

Personalization
Engines

Social Analytics
Platform as a Service (PaasS)

Infrastructure as a Service

Artificial Intelligence for IT
Operations (AIOps) Platforms 7

Virtual Support Agents

0 Mobile Money
) ®

As of July 2017
- Peak of
In_?qvatlon Inflated _ Trough of Slope of Enlightenment Platoau of
rigger Expectations Disillusionment Productivity
time '
Years to mainstream adoption: obsolete

Olessthan 2years ©2to5years @5to10years A morethan 10years @ before plateau

a

'I'J Tampere University

"A suite of small services,
each running in its own
process and
communicating with
lightweight mechanisms,
often an HTTP resource

"These services are built
around business
capabilities and
independently
deployable by fully
automated deployment

machinery." I 4

"There is a bare minimum of
centralized management of these
services, which may be written in
different programming languages

and use different data storage
technologies."

J. Lewis & M. Fowler, ThoughtWorks 14

APL." 7
*38

monolith

s,az-s

microservices

//\\

[

@g,

e

source: https://martinfowler.com/articles/microservices.htmi

a

- J Tampere University

"Small autonomous

"Loosely coupled service-oriented

services that work together, architecture with bounded
modelled around a business contexts."
domain."
"Monolithic apps have invisible
S. Newman, ThoughtWorks, internal complexity. Microservices

author of "Building
Microservices"

expose that [complexity] as explicit
7 micro service dependencies."

Fine-grained

Adrian Cockcroft, AWS

SOA

"We need to move to
managed complexity.
Microservices are about
negotiated interfaces, strict
boundaries, shared
nothing!"

J. Higginbotham, LaunchAnyV

(formerly at Netflix) 7

SOA done
right!

(

- J Tampere University

Amazon's now famous migration from the Obidos monolithic
application to a service-oriented architecture with
encapsulated databases and small, "two-pizza" teams

Amazon's design principles:

Design for flexibility
Design for on demand
Design for automation
Design for failure

Be elastic

Design for utility pricing
Break transparency

Decompose to its simplest form
Design with security in mind
Don't do It alone

Focus on what doesn't change
Let your customers benefit
Continuously innovate

"For us service orientation means encapsulating the data
with the business logic that operates on the data, with the
only access through a published service interface. No direct
database access is allowed from outside the service, and
there’s no data sharing among the services."

-- Werner Vogel, Amazon's CTO, 2006

(

- J Tampere University

Client Service Business

Database

source: http://www.acarlstein.com/

"There's no reason why you can't make a single
monolith with well defined module boundaries. At
least there's no reason in theory. In practice, it seems
too easy for module boundaries to be breached and
monoliths to get tangled as well as large."

-- Martin Fowler

(

- J Tampere University

The microservices style is an approach to design systems
whose parts are easy to change and replace at runtime

It pushes information hiding to new heights by enforcing strict
module boundaries and by promoting information isolation

Central Central
Monitoring Logging

Accounts Service

Products Service
API

; Message
Client Gateway &

Broker

Promotions Service UL
C\

Orders Service

source: http://www.acarlstein.com/

(

- J Tampere University

The microservices style introduces its own set of (distributed
systems related) complexities:

automated deployment

: : : for less-complex systems, the extra
continuously monitoring S sty hovionsrs
deali ng with failure microservices reduces productivity

eventual consistency
security

as complexity kicks in,
productivity starts falling
rapidly

the decreased coupling of
microservices reduces the
attenuation of productivity

"The majority of software systems
should be built as a single monolithic
application. Do pay attention to good
modularity within that monolith. Don't
even consider microservices unless
you have a system that's too Base Complexity

Productivity
Microservice

Monolith

. "
complex to manage as a monolith. source: https:/martinfowler.com/bliki/MicroservicePremium.html

-- Martin Fowler

C.-J Tampere University We can organise services along organisational boundaries

('9 Tampere University We can organise services along organisational boundaries

(

- J Tampere University o
By sub-divinding our systems, we can speed the release of new features

(

- J Tampere University L
By sub-divinding our systems, we can speed the release of new features

(

- J Tampere University] .))
It allows us different options in terms of scaling

(

~I) Tampere University .
J and we can use different tools and tech

(.

- J Tampere University

Summary

We understand more about building reliable distributed systems
cloud compute and programmable infrastructure has matured
organisations need to adapt and change quickly to survive

we spend too much money on building monoliths

i AL [T

2100 T KOWION, '
e N TWIWI]

I_":‘I::

LAY

=

”,.“ Y

- -

p-a = :

w . eSSl - L3

-.v.)

Re —_————

- r) _

4 . »

! - !
- — v

B !

_ P —

=\

PD

IS

A A AYELEM

‘s almost divided in half'

¥

MO

S

Elhc,"puwc'r g-nd

PN

e L

-vr«-_w.--'
: 2 &

tw.;a
AN ERN

P pe——g—

(

e vt - nate
R Coen Sl Pe) ISR

evolutionary architecture
isin the gaps

PG
| 3 P

WARINE R WeaWIW VY ©

< - N T >
J WPFERRTe VRO
<

-J Tampere Unive =0 5

Y

e vt - nate
R Coee Bl 2o 050 IR U0 U

1 C e Y T =Tt eel T AT TTW N Sm—
i et i Y

I ' . GOV TR _aa e e P SR e ST ¢

¥ ' 2))) ! 3!

- B e 3 R (L b TR B

o

emergent design is wi

the zon

ot)
| < o
5
:
g -

. "
9. HE

— p— -
M) v
ll

EERS== ==
. ———— —— {
‘ e ol s il RS B REDwanine
H B S Y e e e v et v

oA d hacddy rha i)
AT,) &

DI RrE s o e g\
"the plan to
4

hin

.....

(

J Tampere University

ALLOW BUSINESS CAPABILITIESTO EVOLVE

HAVE A ROUGH IDEA ABOUT WHAT YOU WANT TO BUILD,
AND DEFER DECISSONS UNTIL YOU KNOW MORE

(

- J Tampere University

(

- J Tampere Unive

a

- J Tampere University

 Towns are Zoned

(

- J Tampere Unive
heavy industrial

(

- J Tampere Unive

commercial

(

- J Tampere Unive

(

- J Tampere Unive

Would you build a playground
next to a power station?

a

- J Tampere University

 Town share utilities

(.
) Tempere e Everyone uses 240V DC right?

C prmpereunive aNd it would be a bad idea not to use the same language
for stop signs...

(

- J Tampere Unive

(

- J Tampere Unive

emergent design is within the zones

evolutionary architecture is in the gaps

(

- J Tampere Unive

emergent design is within the zones

evolutionary architecture is in the gaps

(.

- J Tampere University
Think about
® Concentrate on the business capabilities

® technical acronyms make us think the
wrong way

® VWhat are the common features!?
Integration methods?

® What different types of data live where!?

Evaluating the Architectural Quality in
Cloud Era

Davide Taibi

Professor. University of Oulu

Software Evolution: Organization

1990s and earlier

Pre-SOA (monolithic)

11
.........

Traditional Metrics
Monolithic-Specific

2000s

1raditional SOA

. »
‘,. W B 2B -
L UOOVSC] ~\‘Y44|‘.oo¢
»

Traditional Metrics
Monolithic-Specific

Distributed-System Metrics

2010s

NMicroservices

Traditional Metrics
Monolithic-Specific

Distributed-System Metrics

Microservice-Specific Metrics

2015s

Function as a Service
Highly Decoupled

Service Oriented Architectural Quality: Metrics

. Size
. Complexity
. Coupling

. Cohesion

Justus Bogner, Stefan Wagner, and Alfred Zimmermann. 2017.

Automatically measuring the maintainability of service- and microservice-based systems: a literature review.
IWSM Mensura '17

How to evaluate Architectural Quality

Software Architecture:

Set of structures needed to reason about a software system and the
discipline of creating such structures and systems.

How to evaluate Architectural Quality

Software Architecture:

Set of structures needed to reason about a software system and the
discipline of creating such structures and systems.

How to evaluate Architectural Quality

Software Architecture:

Set of structures needed to reason about a software system and the
discipline of creating such structures and systems.

How to measure the software structures

Reverse Engineering
o Architectural reconstruction
« Business process mining

« Organizational structure reconstruction

Architectural Reconstruction

o Static

e From source code
o Dynamic

« From the execution of the system (e.g. log traces)

Static Analysis Dynamic Analysis

Google Server

—_—

Googlemaps (R oiAS > \ . | A — e =

Street View . A7) . B = . ”

& 5

googlecom/strectview WV \ JaQ " WG Bl ctronic devices that are sharing their location s——|

with Google Maps. ("My location” is ON)

Electronic device that is not sharing
its location ("My location” is OFF)

Mapping all the possible “paths” in your system

Static Analysis
-

~

/ SUNSET'PARK

, Sunset Park

Tanoreen\\

Head'Par

Pacific |
N

B(C

lilton .
‘hool!

& savripcE | @

» Dyker Heig/hts
' '. - Christmas ,Iz/ights

10

Static Analysis

« Source Code

e |aC

o Git Log
« Commit message
¢ PR

Service Call Graph

. Comments /

cms

 |ssue Trackers. T

getByUserName

. 'YX GET /quleStiOn/al \

findAllQuestions

__GET /exam/getByUsername/{usernamej GET /exam GET /exam/finish/{ic ~GET /exam/{id}/question

listAllExams finishExam listAllQuestionsForExam

ems

G ETJ/ test

\

qms

/reateTesI

Static Analysis for Microservice-Based Applications
https://github.com/cloudhubs/prophet-web

~

/

Alexander Bakhtin, Xiaozhou Li, Jacopo Soldani, Antonio Brogi, Tomas Cerny, and Davide Taibi. 2023.
Tools Reconstructing Microservice Architecture: A Systematic Mapping Study. AMC@ECSA Workshtp

Static Analysis: Tools

e 19 Research-based tools for Architectural reconstruction g eca:

« Arcan (Univ. Milano Bicocca)

« Prophet (Oulu and Baylor University)

cms

T

__GET /exam/getByUs(ername/{username} GET /\exam GET /exarp/finish/{ic GET /examL{id}/question
listAllExams finishExam listAllQuestionsForExam

® ces getByUserName
GET /qulestion/al \

findAllQuestions

ems

G ETJ/ test

\ /‘reateTes‘

qms

Static Analysis for Microservice-Based Applications
https://github.com/cloudhubs/prophet-web

Alexander Bakhtin, Xiaozhou Li, Jacopo Soldani, Antonio Brogi, Tomas Cerny, and Davide Taibi. 2023.
Tools Reconstructing Microservice Architecture: A Systematic Mapping Study. AMC@ECSA Workshop

Dynamic Analysis

Google Server

Q o] -

_Electromc deV|ce<‘ that are sharlng then locatlonﬁ

with Google Maps. ("My location” is ON)

Electronic device that is not sharing
its location ("My location” is OFF)

13 Credits: Science ABC

s
A)
o

‘\)

\Y RIDGE

H D\

Christma>(ig|

eights
as ienis

o\
BATHBEACH

Street Traffic View Bicycle Traffic View

14

Dynamic Analysis: Tools

18 tools © o

Q
(10 commercial, 8 research-based) AWS X-Ray
[Bakhtin et al]
® ™ta ™
; .o‘ .. ° @
o o © = .
i . 2 ® P
Dependencies o® E e o0 o
(;g:c;t;:r“mst og:16am [7 - I\l[gc;g;er1st08:16 a (3 IStio-ingressgateway @® » y
® @ @ ‘e .
® o -
e | @c: oworlc % © . °® :'
A y d °,
Wt N i S e e ®
lk’ :“ : E::'IOE’.:;:!’ — = IStio-te #yo-policy e ® eo° :Q. \ : ™,
(}f‘fj \x g S -~ 157 @ % S ° 0: ® e
==e o= ®
=0 o= a— .If‘yT‘Cl mixer ©o o °
Zipkin Jaeger Netflix Interactive Visualization

Alexander Bakhtin, Xiaozhou Li, Jacopo Soldani, Antonio Brogi, Tomas Cerny, and Davide Taibi. 2023.
Tools Reconstructing Microservice Architecture: A Systematic Mapping Study. AMC@ECSA Workshop

Existing tools shortfalls

« Reconstruction only

« Mainly for visualization

« High potential for SQA

Architectural Quality

- Microservice Patterns and Anti-Patterns Cyclic Dependency
. o . Description: A cyclic chain of calls
- I d e nt | f| Cat| on between services exists.
. Detection: Services depend on each
- DeteCt| on t00| San d m eth Od S other in a cyclic interaction pattern, e.g.

A calls B, B calls C, and C calls back A.

Solution: Resolve the cycles by e.g.
relocating functionality (merging) or use
an intermediary like the APl Gateway
pattern.

Example: A depends on B, B on C and
ConA

Anti-Patterns Detection and Visualization

T Cerny, AS Abdelfattah, A Al Maruf, A Janes, D Taibi. Catalog and detection techniques of
microservice anti-patterns and bad smells: A tertiary study. Journal of Systems and Software. 2023 18

Architectural Quality: Coupling

Structural Coupling (calls between services)

[1] S Panichella, M. Rahman, D Taibi. Structural Coupling for Microservices. 11th International Conference on Cloud Computing and Services Science 2021

Cognitive Coupling (co-changes between services)

[2] D. A. d’Aragona, L. Pascarella, A. Janes, V. Lenarduzzi and D. Taibi, "Microservice Logical Coupling: A Preliminary Validation," IEEE 20th International Conference on Software
Architecture ICSA 20223

Microservice Coupling Visualization [1]

Organizational Structure coupling (organizational structure vs sw. Arch)

[3] Li, X., d’Aragona, D.A., Taibi, D. (2024). Evaluating Microservice Organizational Coupling Based on Cross-Service Contribution. Product-Focused Software Process
Improvement. PROFES 2023

19 Microservice Coupling and Anti-Pattern Visualization

Software Degradation - Architecture

Temporal Graph Analysis

- ldentification of degradation of metrics, anti-patterns

Cl/CD Integration

Structural Coupling Evolution

Structural Coupling Structural Coupling Structural Coupling
Trainticket V1 Trainticket V2 Trainticket V3

Elsayed A., Li, X., Cerny, T., and Taibi, D. (2024) "Reconstruction of Microservice Domain and
Service Views to Reason about System Evolution” 2024 IEEE International Conference on Cloud
20 Computing (IEEE CLOUD)

Organizational Structure vs Architecture

The Dream

Organizational Structure Architecture

Organizational Structure vs Architecture

The Reality

Release 2.0.5 Release 2.0.8 Release 2.2.0 Release 3.0.0 Release 5.0.0

Li, X., Abdelfattah, A. S., Yero, J., d'Aragona, D. A., Cerny, T., & Taibi, D. (2023, July). Analyzing organizational structure of microservice projects based
on contributor collaboration. In 2023 IEEE International Conference on Service-Oriented System Engineering (SOSE) (pp. 1-8). IEEE.

Potential of Architectural Reconstruction

jmml@p%ﬂuph.com

- Identification of possible mismatch
- Recommendations
- team or SW reorganization

- Anti-patterns and code smells prevention

A trai sth
P Py

Example of microservice network analysis

[1] A. Bakhtin, X.Li, and D.Taibi. 2024. Temporal Community Detection in Developer Collaboration Networks of Microservice Projects. In Software Architecture: 18th European Conference, ECSA 2024

Serverless Computing
Function-as-a-service

(.

'I'J Tampere University

O’Rellly SW Architecture Conference 2018

Stop using microservices!

Move to serverless functions as soon as possible!

"UWH3t is Serverless [3]

a cloud-native platform

for
short-running, stateless computation

and
event-driven applications

which
scales up and down instantly and automatically

and
charges for actual usage at a millisecond granularity

[3] Baldini I. et al. (2017) Serverless Computing: Current Trends and Open Problems. In: Chaudhary S., Somani G., Buyya
R. (eds) Research Advances in Cloud Computing. Springer, Singapore

CI‘ Ta re Universi s
“"HoW does it work

Runs code only on-demand on a
per-request basis

Serverless " S> <P
deployment & =h <P <>
operations model No servers List code

@davidetaibi

r'I' Ty Univergi " =
’What'triggers code execution?

Event-programming < e
model

.....
[

(

IJ Tampere University

Current Platforms for Serverless

OpenlLambda
“" OpenWhisk P

AWS Lambda -
ISSI10NN
||'Oﬁ§a < > Q Kubernetes

Google Functions

Azure Functions

Red-Hat

Why practitioners are moving to
serverless

a

- J Tampere University

Migration Motivations

Companies Already moved to Microservices
» OPS Effort for Microservices

» Get rid of Kubernetes

* No OPS

Companies Migrating from Monolithic systems
* New (hype) technology

* Promising technology

» No initial infrastructural costs (pay as you use)

« Automatic scaling

 Lack of skilled OPS personnel

(.

- J Tampere University

Preliminary Results — Migration Issues

Developers are not used to the event-oriented programming
Very hard to test

Debug almost impossible

Unknown Patterns and antipatterns

Anomalies can generate unexpected costs!

'D Tampere Universi

ty

Serverless Anti-Patterns

Preliminary Results presented
@ICSA 2020

-l

A

Chg P b
[o el
Ellirg'.?ﬁ

e UI%:.

(.

- J Tampere University

Serverless Anti-Patterns Summary

#1 Async Calls

#2 Functions calling other functions

#3 Shared Code

#4 Shared Libraries as Functions

#5 Too many libraries

#6 Too Many technologies

#7 Too many functions

EXTRA: The distributed Monolith

(.

- J Tampere University

Open Questions - Serverless

 \When is better to use serverless and when microservices

« How to architect a system based on serverless functions?
» Or to combine functions to create a microservice?

» Architectural Patterns? Anti-Patterns?

* How to prevent anomalies?

(.

- J Tampere University

Microservices and FaaS

* Practitioners started migrate to microservices and FaaS

» Mixed Approach (microservices + Functions)

* Open Issues

 When and Why Extract a feature as Function or as Microservice?

* Which pattern should be adopted

Micro-Frontends

(.

- J Tampere University

From Microservices to Micro-Frontends

Monolithic Three-tier Microservices Micro-Frontends

© © pe] O

c C C C

2 o Frontend Team 2 Frontend Team)

C - C C

(o] (@] o 9

o o o o L
B T I . S o 5 T TTTTTTTTETEEEmmmEEE T s Tl o |77 £

; . 5 5 W 5

% Airline Team = = ° = % €

(M) © [@) — n © >
e o 0 __ ol ol.. | §l--]2 - IO K

&] Backend Team & o) £ X &

g g g |8 > 2 g

8 S 8 o m S

[© [\ ©

la ol o o

Bookings

(.

- J Tampere University

Micro-Frontends

» Adopted by several large-companies
» SAP, Zalando, Springer, NewRelic, |kea, Starbucks, Spotify, DAZN, ...

* Increase the team velocity

* But... create duplications in common parts

(.

- J Tampere University

Micro-frontends - Motivations

« Decompose the front-end into individual and semi-independent micro applications.
* In microservice-based systems, the frontend is implemented as a monolithic (or fat)

» Microservice and frontend teams need to synchronize changes

(.

- J Tampere University

Micro-Frontends — How they are implemented

* One micro-frontend per page
» Each team develop a page completely
« Common parts are duplicated (sidebar, header, footers, ...)

« Multiple micro-frontends per page
* Client-side composition
* Edge-side composition
» Server-side composition

(.

- J Tampere University

Micro-Frontends — Open Issues

* When and why they should be used?
* Not for every project.

 Are duplications “beneficial™?
« How about coupling between teams

* Increased application complexity due to page composition at run-time.

* Increased observability complexity, due to the increased number of moving parts.

a

- J Tampere University

New Trends

« Serverless and micro-frontends adoption is increasing

« Companies are trying to move the computation closer to the data = Edge Computing
* New on-premise solutions for edge computing
» Hybrid cloud/on-premise solutions

a

- J Tampere University

Conclusion

Serverless and Microservices are very powerful and useful technologies

Still several open questions

Developers should carefully consider the “old fashioned” software engineering practices
» Properly design a modular system
» Pay attention to coupling and cohesion
» Think about long-term maintenance
* Avoid the distributed monolith

Some companies are moving back to on-premise, other are considering hybrid approaches
« Edge computing is coming

	Slide 2: From Monolithic to Microservices to Serverless
	Slide 3
	Slide 8: Software Systems Evolution
	Slide 9: Software Architecture Evolution
	Slide 10: Software Architecture Evolution
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43: Think about
	Slide 44: Software Architecture Evolution
	Slide 45: Serverless Computing Function-as-a-service
	Slide 46: O’Reilly SW Architecture Conference 2018
	Slide 48: What is Serverless [3]
	Slide 49: How does it work
	Slide 50: What triggers code execution?
	Slide 51: Current Platforms for Serverless
	Slide 52: Why practitioners are moving to serverless
	Slide 54: Migration Motivations
	Slide 55: Preliminary Results – Migration Issues
	Slide 57: Serverless Anti-Patterns
	Slide 58: Serverless Anti-Patterns Summary
	Slide 59: Open Questions - Serverless
	Slide 60: Microservices and FaaS
	Slide 61: Micro-Frontends
	Slide 62: From Microservices to Micro-Frontends
	Slide 63: Micro-Frontends
	Slide 64: Micro-frontends - Motivations
	Slide 65: Micro-Frontends – How they are implemented
	Slide 66: Micro-Frontends – How they are implemented
	Slide 67: Micro-Frontends – Open Issues
	Slide 68: New Trends
	Slide 69: Conclusion

