
From Monolithic to Microservices to
Serverless

Davide Taibi

CloWEE – Cloud and Web Engineering
http://research.tuni.fi/clowee

17.05.2020

Software Systems Evolution

8@davidetaibi

Serverless
Computing

Function as a
Service

Software Architecture Evolution

D.Taibi, V.Lenarduzzi, C.Pahl, A.Janes. Microservices Architectural Styles: Agile or not Agile?
XP 2017

Microservices - Cagliari 11.07.2018

Software Architecture Evolution

@davidetaibi

2015s

Function as a Service
Highly Decoupled

Microservices - Cagliari 11.07.2018

Microservices - Cagliari 11.07.2018

Microservices - Cagliari 11.07.2018

Microservices - Cagliari 11.07.2018

Microservices - Cagliari 11.07.2018

Microservices - Cagliari 11.07.2018

Microservices - Cagliari 11.07.2018

Microservices - Cagliari 11.07.2018

We can organise services along organisational boundaries

Microservices - Cagliari 11.07.2018

We can organise services along organisational boundaries

Microservices - Cagliari 11.07.2018

Microservices - Cagliari 11.07.2018

Microservices - Cagliari 11.07.2018

Microservices - Cagliari 11.07.2018

Microservices - Cagliari 11.07.2018

Microservices - Cagliari 11.07.2018

Microservices - Cagliari 11.07.2018 50

evolut ionary architecture
is in the gaps

Microservices - Cagliari 11.07.2018 51

emergent design is within
the zones

Microservices - Cagliari 11.07.2018

52

ALLOW BUSINESS CAPABILITIES TO EVOLVE

HAVE A ROUGH IDEA ABOUT WHAT YOU WANT TO BUILD,
AND DEFER DECISIONS UNTIL YOU KNOW MORE

Microservices - Cagliari 11.07.2018

Microservices - Cagliari 11.07.2018

• Towns are Zoned

Microservices - Cagliari 11.07.2018

Microservices - Cagliari 11.07.2018

heavy industrial

Microservices - Cagliari 11.07.2018

commercial

Microservices - Cagliari 11.07.2018

light residential

Microservices - Cagliari 11.07.2018

Would you build a playground
next to a power station?

• Town share utilities

Microservices - Cagliari 11.07.2018

Microservices - Cagliari 11.07.2018

Everyone uses 240V DC right?

Microservices - Cagliari 11.07.2018

and it would be a bad idea not to use the same language
for stop signs...

Microservices - Cagliari 11.07.2018

Microservices - Cagliari 11.07.2018

evolutionary architecture is in the gaps

emergent design is within the zones

Microservices - Cagliari 11.07.2018

evolutionary architecture is in the gaps

emergent design is within the zones

Think about

Microservices - Cagliari 11.07.2018

• Things to think about:

• Concentrate on the business capabilities

• technical acronyms make us think the
wrong way

• What are the common features?
Integration methods?

• What different types of data live where?

Evaluating the Architectural Quality in the
Cloud Era

Davide Taibi
Professor. University of Oulu

2015s

Function as a Service
Highly Decoupled

Traditional Metrics
Monolithic-Specific

Distributed-System Metrics

Microservice-Specific Metrics

Traditional Metrics
Monolithic-Specific

Traditional Metrics
Monolithic-Specific

Distributed-System Metrics

Software Evolution: Organization

Service Oriented Architectural Quality: Metrics

• Size

• Complexity

• Coupling

• Cohesion

Justus Bogner, Stefan Wagner, and Alfred Zimmermann. 2017.
Automatically measuring the maintainability of service- and microservice-based systems: a literature review.
IWSM Mensura '17

How to evaluate Architectural Quality

Software Architecture:

Set of structures needed to reason about a software system and the
discipline of creating such structures and systems.

How to evaluate Architectural Quality

Software Architecture:

Set of structures needed to reason about a software system and the
discipline of creating such structures and systems.

How to evaluate Architectural Quality

Software Architecture:

Set of structures needed to reason about a software system and the
discipline of creating such structures and systems.

How to measure the software structures

Reverse Engineering

• Architectural reconstruction

• Business process mining

• Organizational structure reconstruction

Architectural Reconstruction

• Static

• From source code

• Dynamic

• From the execution of the system (e.g. log traces)

9

Mapping all the possible “paths” in your system

Static Analysis Dynamic Analysis

10

Credits: Google Maps

Static Analysis

11

• Source Code
• IaC
• Git Log

• Commit message
• PR
• Comments

• Issue Trackers.
• …

Static Analysis

Static Analysis for Microservice-Based Applications
https://github.com/cloudhubs/prophet-web

Service Call Graph

Alexander Bakhtin, Xiaozhou Li, Jacopo Soldani, Antonio Brogi, Tomas Cerny, and Davide Taibi. 2023.
Tools Reconstructing Microservice Architecture: A Systematic Mapping Study. AMC@ECSA Workshop

• 19 Research-based tools for Architectural reconstruction [Bakhtin et al]

• Arcan (Univ. Milano Bicocca)

• Prophet (Oulu and Baylor University)

• …

Static Analysis: Tools

Alexander Bakhtin, Xiaozhou Li, Jacopo Soldani, Antonio Brogi, Tomas Cerny, and Davide Taibi. 2023.
Tools Reconstructing Microservice Architecture: A Systematic Mapping Study. AMC@ECSA Workshop

Static Analysis for Microservice-Based Applications
https://github.com/cloudhubs/prophet-web

13

Dynamic Analysis

Credits: Science ABC

14

Street Traffic View Bicycle Traffic View

Dynamic Analysis

18 tools

(10 commercial, 8 research-based)
[Bakhtin et al]

Dynamic Analysis: Tools

Alexander Bakhtin, Xiaozhou Li, Jacopo Soldani, Antonio Brogi, Tomas Cerny, and Davide Taibi. 2023.
Tools Reconstructing Microservice Architecture: A Systematic Mapping Study. AMC@ECSA Workshop

JaegerZipkin

AWS X-Ray

Netflix Interactive Visualization

Existing tools shortfalls

• Reconstruction only

• Mainly for visualization

• High potential for SQA

What can we measure from Call
Graphs?

18

Architectural Quality

- Microservice Patterns and Anti-Patterns
- Identification
- Detection tools and methods

Anti-Patterns Detection and Visualization

T Cerny, AS Abdelfattah, A Al Maruf, A Janes, D Taibi. Catalog and detection techniques of
microservice anti-patterns and bad smells: A tertiary study. Journal of Systems and Software. 2023

19

- Structural Coupling (calls between services)

- Cognitive Coupling (co-changes between services)
[2] D. A. d’Aragona, L. Pascarella, A. Janes, V. Lenarduzzi and D. Taibi, "Microservice Logical Coupling: A Preliminary Validation," IEEE 20th International Conference on Software
Architecture ICSA 20223

- Organizational Structure coupling (organizational structure vs sw. Arch)
[3] Li, X., d’Aragona, D.A., Taibi, D. (2024). Evaluating Microservice Organizational Coupling Based on Cross-Service Contribution. Product-Focused Software Process
Improvement. PROFES 2023

Architectural Quality: Coupling

Microservice Coupling Visualization [1]

Microservice Coupling and Anti-Pattern Visualization

[1] S Panichella, M. Rahman, D Taibi. Structural Coupling for Microservices. 11th International Conference on Cloud Computing and Services Science 2021

20

Software Degradation - Architecture

Structural Coupling
Trainticket V1

Structural Coupling
Trainticket V2

Structural Coupling
Trainticket V3

Structural Coupling Evolution

Elsayed A., Li, X., Cerny, T., and Taibi, D. (2024) “Reconstruction of Microservice Domain and
Service Views to Reason about System Evolution” 2024 IEEE International Conference on Cloud

Computing (IEEE CLOUD)

- Temporal Graph Analysis
- Identification of degradation of metrics, anti-patterns

- CI/CD Integration

Organizational Structure vs Architecture

Organizational Structure Architecture

The Dream

Organizational Structure vs Architecture

The Reality

Li, X., Abdelfattah, A. S., Yero, J., d'Aragona, D. A., Cerny, T., & Taibi, D. (2023, July). Analyzing organizational structure of microservice projects based
on contributor collaboration. In 2023 IEEE International Conference on Service-Oriented System Engineering (SOSE) (pp. 1-8). IEEE.

Potential of Architectural Reconstruction

- Identification of possible mismatch
- Recommendations

- team or SW reorganization
- Anti-patterns and code smells prevention

Example of microservice network analysis

Example of developer network analysis

[1] A. Bakhtin, X.Li, and D.Taibi. 2024. Temporal Community Detection in Developer Collaboration Networks of Microservice Projects. In Software Architecture: 18th European Conference, ECSA 2024

Serverless Computing
Function-as-a-service

O’Reilly SW Architecture Conference 2018

Stop using microservices!

Move to serverless functions as soon as possible!

What is Serverless [3]

[3] Baldini I. et al. (2017) Serverless Computing: Current Trends and Open Problems. In: Chaudhary S., Somani G., Buyya
R. (eds) Research Advances in Cloud Computing. Springer, Singapore

How does it work

Runs code only on-demand on a
per-request basis

Serverless
deployment &
operations model No servers Just code

Server-less means no servers?
Or worry-less about servers?

@davidetaibi

Runs code in response to events

Event-programming
model

What triggers code execution?

Current Platforms for Serverless

Azure Functions

AWS Lambda

Kubernetes

Google Functions

Red-Hat

Why practitioners are moving to
serverless

Migration Motivations

Companies Already moved to Microservices
• OPS Effort for Microservices
• Get rid of Kubernetes
• No OPS

Companies Migrating from Monolithic systems
• New (hype) technology
• Promising technology
• No initial infrastructural costs (pay as you use)
• Automatic scaling
• Lack of skilled OPS personnel

Preliminary Results – Migration Issues

Developers are not used to the event-oriented programming

Very hard to test

Debug almost impossible

Unknown Patterns and antipatterns

Anomalies can generate unexpected costs!

Serverless Anti-Patterns

Preliminary Results presented
@ICSA 2020

Serverless Anti-Patterns Summary

#1 Async Calls

#2 Functions calling other functions

#3 Shared Code

#4 Shared Libraries as Functions

#5 Too many libraries

#6 Too Many technologies

#7 Too many functions

EXTRA: The distributed Monolith

Open Questions - Serverless

• When is better to use serverless and when microservices

• How to architect a system based on serverless functions?
• Or to combine functions to create a microservice?

• Architectural Patterns? Anti-Patterns?

• How to prevent anomalies?

Microservices and FaaS

• Practitioners started migrate to microservices and FaaS

• Mixed Approach (microservices + Functions)

• Open Issues
• When and Why Extract a feature as Function or as Microservice?

• Which pattern should be adopted

Micro-Frontends

From Microservices to Micro-Frontends

Micro-Frontends

• Adopted by several large-companies
• SAP, Zalando, Springer, NewRelic, Ikea, Starbucks, Spotify, DAZN, …

• Increase the team velocity

• But… create duplications in common parts

Micro-frontends - Motivations
• Decompose the front-end into individual and semi-independent micro applications.

• In microservice-based systems, the frontend is implemented as a monolithic (or fat)

• Microservice and frontend teams need to synchronize changes

Micro-Frontends – How they are implemented
• One micro-frontend per page

• Each team develop a page completely
• Common parts are duplicated (sidebar, header, footers, …)

• Multiple micro-frontends per page
• Client-side composition
• Edge-side composition
• Server-side composition

Micro-Frontends – How they are implemented
• One micro-frontend per page

• Each team develop a page completely
• Common parts are duplicated (sidebar, header, footers, …)

• Multiple micro-frontends per page
• Client-side orchestration
• Edge-side orchestration

Micro-Frontends – Open Issues
• When and why they should be used?

• Not for every project.

• Are duplications “beneficial”?
• How about coupling between teams

• Increased application complexity due to page composition at run-time.

• Increased observability complexity, due to the increased number of moving parts.

New Trends

• Serverless and micro-frontends adoption is increasing

• Companies are trying to move the computation closer to the data  Edge Computing
• New on-premise solutions for edge computing
• Hybrid cloud/on-premise solutions

Conclusion

• Serverless and Microservices are very powerful and useful technologies

• Still several open questions

• Developers should carefully consider the “old fashioned” software engineering practices
• Properly design a modular system
• Pay attention to coupling and cohesion
• Think about long-term maintenance
• Avoid the distributed monolith

• Some companies are moving back to on-premise, other are considering hybrid approaches
• Edge computing is coming

	Slide 2: From Monolithic to Microservices to Serverless
	Slide 3
	Slide 8: Software Systems Evolution
	Slide 9: Software Architecture Evolution
	Slide 10: Software Architecture Evolution
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43: Think about
	Slide 44: Software Architecture Evolution
	Slide 45: Serverless Computing Function-as-a-service
	Slide 46: O’Reilly SW Architecture Conference 2018
	Slide 48: What is Serverless [3]
	Slide 49: How does it work
	Slide 50: What triggers code execution?
	Slide 51: Current Platforms for Serverless
	Slide 52: Why practitioners are moving to serverless
	Slide 54: Migration Motivations
	Slide 55: Preliminary Results – Migration Issues
	Slide 57: Serverless Anti-Patterns
	Slide 58: Serverless Anti-Patterns Summary
	Slide 59: Open Questions - Serverless
	Slide 60: Microservices and FaaS
	Slide 61: Micro-Frontends
	Slide 62: From Microservices to Micro-Frontends
	Slide 63: Micro-Frontends
	Slide 64: Micro-frontends - Motivations
	Slide 65: Micro-Frontends – How they are implemented
	Slide 66: Micro-Frontends – How they are implemented
	Slide 67: Micro-Frontends – Open Issues
	Slide 68: New Trends
	Slide 69: Conclusion

