
Data-Driven Software
Engineering

Generative AI In Software Engineering

University of Oulu

About me

2011 - 2015 Ph.D. in Computer Science - University of Insubria (Italy)

2014 - 2015
Visiting Researcher - University of Kaiserslautern and FRAUNHNOFER

IESE (Germany)

2015 - 2017 Post-doctoral Researcher - Free University of Bozen-Bolzano (Italy)

2011 - 2015 Co-founder/Project Manager - OpenSoftEngineering s.r.l.

2018 - 2019 Post-doctoral Researcher - Tampere University (Finland)

2020 - 2022 Post-doctoral Researcher - LUT University (Finland)

2022 - 2024 Assistant Professor (tenure track) - University of Oulu (Finland)

From 2024 Associate Professor (tenure track) - University of Oulu (Finland)

University of Oulu

Introduction to
Generative AI

3

University of Oulu

What is Generative AI?

‒ Generative AI refers to a category of artificial intelligence models designed to
generate new data that resembles existing data. Unlike traditional AI, which
focuses on classification or prediction, generative AI is about creating new and
original content.

‒ These models learn the underlying patterns of data (such as text, images, or
music) and use those patterns to generate similar content. By learning
complex data distributions, they can create realistic, high-quality outputs.

‒ Examples of Generative AI Models Include generative Adversarial Networks
(GANs), Variational Autoencoders (VAEs), and Transformer-based models like
GPT.

4

University of Oulu

Generative AI vs. Traditional AI

‒ Traditional AI: Typically solves classification, regression, or clustering
problems. For example, identifying objects in images, predicting future values,
or grouping similar items.

‒ Generative AI: Focuses on creating new data that mimics the properties of the
original data. Generative models are designed to deeply understand data
distributions, allowing them to produce outputs similar to those in the training
data.

‒ Traditional AI answers questions or provides decisions based on given data,
while generative AI produces new data, providing creative abilities in
applications like content generation, design, and entertainment.

5

University of Oulu

Why Generative AI is Important

‒ Creative Applications: Generative AI can automate creative tasks, such as designing artwork,
composing music, or generating realistic photos. This has opened up new possibilities in fields
like entertainment, digital art, and advertising.

‒ Healthcare and Drug Discovery: In fields like drug discovery, generative AI helps scientists
simulate molecules and predict new drug formulations, speeding up the research process.

‒ Data Augmentation: Generative AI creates synthetic data to augment datasets. This is
especially useful in domains with limited data, like medical imaging or autonomous driving,
where gathering real-world data can be expensive or impractical.

‒ Enhancing Human Creativity: By collaborating with generative AI, humans can push creative
boundaries. Artists, musicians, and writers can use AI to inspire new ideas and explore creative
spaces that might not be accessible otherwise.

6

University of Oulu

Overview of Generative AI Techniques

‒ Popular Techniques: GANs, VAEs, and Transformers. Each technique has unique approaches for handling data
and generating new content.

‒ GANs (Generative Adversarial Networks): Two-part model structure with a generator that produces fake data and a
discriminator that distinguishes between real and fake data.

‒ VAEs (Variational Autoencoders): Models that encode input data into a compressed latent space and then decode it
back, useful for generating smooth variations of data.

‒ Transformers: Attention-based models that process sequential data, making them crucial for language-based
generative tasks like text generation and translation.

‒ Other Techniques: Includes Markov Chains and Recurrent Neural Networks (RNNs), which were popular in early
generative models but are now mostly outpaced by newer architectures like transformers.

7

University of Oulu

Key Terms in Generative AI

‒ Latent Space: A lower-dimensional space where data is represented in compressed
form. Models like VAEs utilize this space for generating new variations of input data.

‒ Distribution Learning: Generative models learn the distribution of the training data,
allowing them to sample from this learned distribution and create similar new data.

‒ Stochasticity: Randomness is introduced in the generation process to ensure diversity
in the outputs. For example, GANs produce slightly different images each time due to
this stochastic process.

‒ Decoder: In models like VAEs, the decoder is responsible for reconstructing the input
from its latent representation, which helps in generating new variations of the input
data.

8

University of Oulu

GenAI Examples

9

University of Oulu

Text Generation with Generative AI

‒ Text generation models take a prompt or starting text and expand
upon it to generate human-like paragraphs, articles, or dialogues.

‒ It is primarily based on Transformer architectures, such as GPT-3,
which use attention mechanisms to produce coherent and
contextually relevant text.

‒ Applications includes content creation, customer service, digital
marketing, and even creative writing. Text generation models can
generate entire articles, answer questions, or simulate conversations
in chatbots.

10

University of Oulu

Image Generation with Models like DALL-E

‒ Models are trained on large datasets of images and their
corresponding descriptions. They can generate images from textual
prompts by learning the relationship between text and images.

‒ Applications: Useful in fields like advertising, where brands can
generate custom visuals for marketing campaigns, or in
entertainment for creating concept art.

‒ DALL-E, a model that can create highly detailed and creative images
based on complex prompts, such as “a futuristic cityscape at sunset.”

11

University of Oulu

Music Generation with Models like MuseNet

‒ AI can compose original music by learning the structure of
musical compositions, such as chord progressions, rhythm, and
melody.

‒ These models can aid composers in generating new pieces,
assist musicians in ideation, or provide background music for
video games and movies.

‒ MuseNet by OpenAI, which can generate music in various
styles and instruments.

12

University of Oulu

Types of Generative
Models

13

University of Oulu

Overview of Generative Models

‒ Definition: Generative models are designed to produce new instances that
resemble the data they were trained on. Unlike discriminative models, which
classify or label data, generative models create data based on learned
patterns.

‒ Main Types: The three most widely used types of generative models are:

- Generative Adversarial Networks (GANs): Widely used for image and video generation.
- Variational Autoencoders (VAEs): Useful for data compression and anomaly detection.
- Transformers: Primarily used in natural language processing for text generation and translation.

‒ Other Types: Less common but foundational techniques include Markov
Chains, which are probabilistic models, and Recurrent Neural Networks
(RNNs), which handle sequential data but are less efficient than Transformers
for large datasets.

14

University of Oulu

Large Language Models
Yeah! Now is the time to talk about it!

15

University of Oulu

Introduction to Large
Language Model

‒ Large Language Models (LLMs) are
advanced AI models trained on massive
datasets of text to generate and understand
human language. They can handle tasks such
as answering questions, summarizing text,
translating languages, and even coding.

‒ Popular Models:

- GPT-3 and GPT-4 by OpenAI: Known for generating
coherent and contextually relevant text.

- BERT by Google: Excel in understanding the context
within text, widely used in search engines.

- T5 by Google: Known for treating NLP tasks in a unified
text-to-text format, making it versatile and adaptable.

- LLaMA: General Purpose, Open-Source LLM from Meta

16

University of Oulu

Limitations of LLMs

‒ Bias and Fairness: Since LLMs learn from vast amounts of text data, they can inherit and amplify biases present
in the training data. This can lead to problematic outputs, such as biased language or stereotypes. Mitigating bias in
LLMs remains an ongoing research challenge.

‒ Resource Intensive: Training LLMs requires substantial computational power and energy, which can be costly and
have environmental impacts. As models become more complex, their resource demands increase, making it
essential to find efficient training methods.

‒ Accuracy and Reliability: Although LLMs can generate coherent responses, they sometimes produce incorrect or
misleading information. This is because LLMs need help understanding language; they predict the most likely next
word based on patterns. Therefore, they are prone to factual inaccuracies, which can limit their use in critical
applications.

‒ Interpretability: LLMs function as black boxes, meaning how they arrive at specific outputs is often unclear. This
lack of interpretability can be problematic in fields like healthcare or law, where understanding the reasoning behind
a decision is crucial.

17

University of Oulu

LLMs in SE

18

University of Oulu

Code Generation and Completion

‒ How It Works: LLMs like GitHub Copilot use a model trained on vast amounts of code
to assist developers by suggesting lines of code, completing function definitions, or
automating boilerplate code.

‒ Benefits for Developers:

- Time-Saving: Code completion speeds up the development process by reducing the need for typing and
enabling developers to focus on more complex tasks.

- Error Reduction: LLMs can help identify common syntax or logic errors, improving code quality and reducing
bugs in the final product.

- Learning Tool: Code generation tools can be educational, helping less experienced developers understand
best practices and coding conventions.

‒ Limitations: While useful, LLM-generated code may contain security vulnerabilities,
errors, or unconventional approaches. Developers must review and refine the
generated code to ensure reliability and security.

19

University of Oulu

Code Review and Documentation

‒ Automating Code Reviews: LLMs can assist in code review by detecting potential issues, suggesting best
practices, and providing feedback on code structure and readability. This can help maintain consistent quality
across a codebase.

‒ Documentation Generation: LLMs can automatically generate documentation for functions, classes, and modules.
They create comments or docstrings that make the code more understandable by analyzing code and identifying its
purpose.

‒ Enhanced Collaboration: Automated documentation makes it easier for team members to understand each
other’s code, improving collaboration.

‒ Improved Readability: Code comments and documentation clarify the intent behind complex code, aiding
maintainability and simplifying future updates.

‒ While LLMs are powerful tools for generating code documentation, they may sometimes produce vague or
inaccurate results if they misunderstand the code’s purpose. This underscores the importance of human oversight
in ensuring that the documentation is clear and correct.

20

University of Oulu

Testing and Debugging with LLMs

‒ Automated Test Generation: LLMs can generate unit tests based on function definitions and expected outcomes,
helping developers ensure that their code is thoroughly tested. For example, a model might generate multiple test
cases for a sorting function, checking edge cases like empty or null inputs.

‒ Debugging Assistance: LLMs can analyze code and suggest possible reasons for errors. By identifying potential
bugs and proposing fixes, they streamline the debugging process and reduce time spent troubleshooting.

‒ Increased Test Coverage: Automated test generation helps cover a wider range of scenarios, improving software
reliability.

‒ Faster Debugging: LLMs provide insights into common errors and debugging tips, helping developers resolve
issues more quickly.

‒ Limitations: While LLMs can assist in debugging, they may not always provide accurate suggestions for complex
issues. Developers must use their expertise to validate and apply the model’s recommendations.

21

University of Oulu

Integrating LLMs into DevOps

‒ CI/CD Automation: LLMs can be integrated into Continuous Integration and Continuous Deployment (CI/CD)
pipelines to perform code assessments, security checks, and compliance validation. This helps automate quality
assurance and ensures that code meets organizational standards before deployment.

‒ Automated Code Assessments: LLMs can analyze code changes, detect potential vulnerabilities, and flag issues
before they are merged into the main codebase. This reduces the risk of introducing bugs or security flaws into
production.

‒ Streamlined Workflows: Automating repetitive tasks reduces manual work, enabling DevOps teams to focus on
higher-level tasks.

‒ Improved Code Quality: Regular code assessments ensure that code is secure, compliant, and optimized for
performance, reducing the likelihood of production issues.

‒ Challenges: Integrating LLMs into DevOps requires careful configuration to ensure that assessments are accurate
and that the model’s recommendations align with organizational standards. Additionally, teams must monitor the
LLM’s outputs to avoid false positives or missed issues.

22

Bridging (Gen)AI and
Software Engineering

From Open Source Adoption to Mission-Critical Applications

University of Oulu

The Path Ahead
Few Hints ☺

24

AI In OSS

Adoption and impact

on development

Generative AI

Evidence-Based

Software Engineering

Agentic AI

Infrastructure as

Code in DevSecOps

AI In OSS

Impact on Technical Debt

1 2 43

AI In OSS

Is it eating Software?

8

Agentic AI

Autonomous Microservices Anomaly

Detection and Remediation
9

Generative AI

Security Risk Analysis of

Mission Critical IT Systems

5

Generative AI

Mission Critical IT

Systems Governance

6

Agentic AI

Autonomous Mission Critical IT

Governance

Generative AI

Static Analysis Security Testing

Tools Self Improvement

7

10

University of Oulu

AI Libraries in OSS
Adoption and Impact on Development (1/2)

‒ Open Source Software (OSS) emerged in the 1980s as a
revolutionary alternative to proprietary software.

‒ Artificial Intelligence (AI) is increasingly present in OSS projects.

‒ Assess the adoption of AI libraries in Python and Java OSS
projects.

- Examine how AI libraries shape development in terms of:

- Technical Ecosystem - Community Engagement

25

University of Oulu

AI Libraries in OSS
Adoption and Impact on Development (2/2)

‒ Conducted a large-scale analysis of 6,323 OSS repositories.

‒ Scarce Adoption

- AI libraries are not widely adopted in OSS projects.

‒ Enhanced Community Engagement:

- Projects with AI libraries show more issues, pull requests, commits, and forks.

‒ Complex Technical Ecosystem:

- Heightened dependency networks.

- Increased workflow proliferation.

26

University of Oulu

AI Libraries in OSS
Is AI Eating Software?

‒ Rapid integration of AI in software development brings opportunities and
challenges.

‒ Technical debt is a critical issue affected by AI adoption.

‒ Investigate how AI usage contributes to or mitigates technical debt in OSS.

‒ Conduct an exploratory, large-scale analysis of GitHub projects.

‒ Focus on temporal trends and their impact on TD accumulation.

27

University of Oulu

AI Libraries in OSS
Impact of Technical Debt

‒ Rapid integration of AI in software development brings opportunities and
challenges.

‒ Technical debt is a critical issue affected by AI adoption.

‒ Investigate how AI usage contributes to or mitigates technical debt in OSS.

‒ Conduct an exploratory, large-scale analysis of GitHub projects.

‒ Focus on temporal trends and their impact on TD accumulation.

28

University of Oulu

Generative AI
Evidence-Based Software Engineering

‒ Capabilities of Textual-GAI

- Allows researchers to explore new generative scenarios.

- Simplifies and accelerates time-consuming text generation and analysis tasks.

‒ Role of GAI in Evidence-Based Software Engineering

- Investigated and envisioned how GAI can support EBSE researchers.

- Working on empirically validating a comprehensive suite of models to effectively

support EBSE researchers in managing literature reviews and data analysis.

05/12/202429 Advanced Methods for Empir ical Software Engineering and Security in AI-driven System

University of Oulu

Generative AI
Security Risk Analysis of Mission Critical IT Systems (1/2)

‒ Mission Critical Risk Analysis is time consuming and knowledge-hungry

‒ Assess the effectiveness of Large Language Models (LLMs) in mission-critical
risk analysis, particularly Retrieval-Augmented Generation (RAG) and fine-
tuned models.

‒ What we did:

- Data collected from 50+ mission-critical analyses over five years, totaling 1283 samples.

- LLMs (GPT-3.5, GPT-4, RAG and fine-tuned variations) vs. human experts in risk assessment.

- Human experts provided both analysis and review.

05/12/202430 Advanced Methods for Empir ical Software Engineering and Security in AI-driven System

University of Oulu

Generative AI
Security Risk Analysis of Mission Critical IT Systems (2/2)

‒ Industrial Application:

- RAG models can enhance risk assessment in mission-critical systems by rapidly
surfacing hidden risks.

- Fine-tuned LLMs are ideal for accuracy-focused scenarios.

‒ Future Work:

- Further exploration into improving LLM accuracy for broader risk analysis applications.
- Potential for training models on domain-specific countermeasures.

‒ Conclusion:

- LLMs, particularly RAG models, offer valuable support in risk analysis by speeding up
the process and uncovering risks missed by human experts.

05/12/202431 Advanced Methods for Empir ical Software Engineering and Security in AI-driven System

University of Oulu

Generative AI
Governance of Mission Critical IT Systems (1/2)

‒ Critical infrastructure security (healthcare, telecommunications, military
coordination) is a fundamental concern, intensified by today’s cyber warfare
landscape.

‒ Importance of Mission-Critical Systems (MCSs):

- Protecting MCSs is vital for national security.

- These systems require prompt and comprehensive governance to ensure resilience.

‒ Challenges in Governance:

- Recent events have highlighted increasing difficulties in meeting the demands of MCS security
and governance.

05/12/202432 Advanced Methods for Empir ical Software Engineering and Security in AI-driven System

University of Oulu

Generative AI
Governance of Mission Critical IT Systems (2/2)

‒ Insights and Recommendations:

- Interdisciplinary Collaboration is essential to safely integrate Large Language
Models (LLMs) in MCS governance.

- Researchers should focus on designing regulation-oriented models with an
emphasis on accountability.

- Practitioners should prioritize data protection and transparency.

- Policymakers must establish a unified AI framework with global benchmarks to
ensure ethical and secure LLM-based MCS governance.

05/12/202433 Advanced Methods for Empir ical Software Engineering and Security in AI-driven System

University of Oulu

Agentic AI
What?

‒ Autonomy: Empowers Generative AI to act and make
decisions independently.

‒ Adaptability: Enables AI to interact with systems and
adapt to changes.

‒ Efficiency: Creates self-managing systems that enhance
performance and responsiveness.

05/12/202434 Advanced Methods for Empir ical Software Engineering and Security in AI-driven System

University of Oulu

Agentic AI
Infrastructure as Code in DevSecOps (1/2)

‒ Computing is deeply integrated into our daily lives through smartphones, smart homes,
and connected cars.

‒ There’s a growing demand for development automation strategies to meet tight
release schedules and rapidly deliver software projects.

‒ No existing studies focus on using GAI to generate IaC scripts based on DevSecOps
stage artifacts.

‒ Different IaC tools require specific infrastructure setups for various project stages
(testing, deployment, monitoring).

05/12/202435 Advanced Methods for Empir ical Software Engineering and Security in AI-driven System

University of Oulu

Agentic AI
Infrastructure as Code in DevSecOps (2/2)

‒ Envisioned Solution:

- GAI models that utilize artifacts from each DevSecOps stage to create and refine IaC
scripts.

‒ Impact for Practitioners:

- Provides an automatic copilot for infrastructure design and deployment.

‒ Opportunities for Researchers:

- A foundation for further empirical validation.

- Potential to expand the possibilities enabled by this approach.

05/12/202436 Advanced Methods for Empir ical Software Engineering and Security in AI-driven System

University of Oulu

Agentic AI
Autonomous Microservice Anomaly Detection and Remediation (1/2)

‒ Microeservices offer unparalleled scalability and independent deployment in cloud
computing.

‒ Decentralized nature introduces significant security and management challenges.

‒ Potential threats to system stability due to complexity and distribution.

‒ Quick detection and remediation to anomalies still requires a highly trained expert

05/12/202437 Advanced Methods for Empir ical Software Engineering and Security in AI-driven System

University of Oulu

Agentic AI
Autonomous Microservice Anomaly Detection and Remediation (2/2)

‒ Proposed Framework:

- Based on MAPE-K (Monitor, Analyze, Plan, Execute over a Knowledge base).

- Leverages Agentic AI for autonomous anomaly detection and remediation.

- Addresses the challenges of managing highly distributed systems.

‒ Practical, Industry-Ready Solutions:

- Maintains robust and secure microservices environments.

- Customizable skeleton allows practitioners to:

- Enhance system stability.

- Reduce downtime.

- Ensure continuous, efficient operations tailored to specific needs.

05/12/202438 Advanced Methods for Empir ical Software Engineering and Security in AI-driven System

	Lecgture Part 1 - Generative AI
	Slide 1: Data-Driven Software Engineering
	Slide 2: About me
	Slide 3: Introduction to Generative AI
	Slide 4: What is Generative AI?
	Slide 5: Generative AI vs. Traditional AI
	Slide 6: Why Generative AI is Important
	Slide 7: Overview of Generative AI Techniques
	Slide 8: Key Terms in Generative AI
	Slide 9: GenAI Examples
	Slide 10: Text Generation with Generative AI
	Slide 11: Image Generation with Models like DALL-E
	Slide 12: Music Generation with Models like MuseNet
	Slide 13: Types of Generative Models
	Slide 14: Overview of Generative Models

	Lecture Part II - LLM
	Slide 15: Large Language Models
	Slide 16: Introduction to Large Language Model
	Slide 17: Limitations of LLMs

	Lecture Part III - LLM in SE
	Slide 18: LLMs in SE
	Slide 19: Code Generation and Completion
	Slide 20: Code Review and Documentation
	Slide 21: Testing and Debugging with LLMs
	Slide 22: Integrating LLMs into DevOps

	Seminar - Our Story so Far
	Slide 23: Bridging (Gen)AI and Software Engineering
	Slide 24: The Path Ahead Few Hints

	AI in OSS
	Slide 25: AI Libraries in OSS Adoption and Impact on Development (1/2)
	Slide 26: AI Libraries in OSS Adoption and Impact on Development (2/2)
	Slide 27: AI Libraries in OSS Is AI Eating Software?
	Slide 28: AI Libraries in OSS Impact of Technical Debt

	Generative AI
	Slide 29: Generative AI Evidence-Based Software Engineering
	Slide 30: Generative AI Security Risk Analysis of Mission Critical IT Systems (1/2)
	Slide 31: Generative AI Security Risk Analysis of Mission Critical IT Systems (2/2)
	Slide 32: Generative AI Governance of Mission Critical IT Systems (1/2)
	Slide 33: Generative AI Governance of Mission Critical IT Systems (2/2)

	Agentic AI
	Slide 34: Agentic AI What?
	Slide 35: Agentic AI Infrastructure as Code in DevSecOps (1/2)
	Slide 36: Agentic AI Infrastructure as Code in DevSecOps (2/2)
	Slide 37: Agentic AI Autonomous Microservice Anomaly Detection and Remediation (1/2)
	Slide 38: Agentic AI Autonomous Microservice Anomaly Detection and Remediation (2/2)

