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What is Generative AI?

‒ Generative AI refers to a category of artificial intelligence models designed to 
generate new data that resembles existing data. Unlike traditional AI, which 
focuses on classification or prediction, generative AI is about creating new and 
original content.

‒ These models learn the underlying patterns of data (such as text, images, or 
music) and use those patterns to generate similar content. By learning 
complex data distributions, they can create realistic, high-quality outputs.

‒ Examples of Generative AI Models Include generative Adversarial Networks 
(GANs), Variational Autoencoders (VAEs), and Transformer-based models like 
GPT.
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Generative AI vs. Traditional AI

‒ Traditional AI: Typically solves classification, regression, or clustering 
problems. For example, identifying objects in images, predicting future values, 
or grouping similar items.

‒ Generative AI: Focuses on creating new data that mimics the properties of the 
original data. Generative models are designed to deeply understand data 
distributions, allowing them to produce outputs similar to those in the training 
data.

‒ Traditional AI answers questions or provides decisions based on given data, 
while generative AI produces new data, providing creative abilities in 
applications like content generation, design, and entertainment.
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Why Generative AI is Important

‒ Creative Applications: Generative AI can automate creative tasks, such as designing artwork, 
composing music, or generating realistic photos. This has opened up new possibilities in fields 
like entertainment, digital art, and advertising.

‒ Healthcare and Drug Discovery: In fields like drug discovery, generative AI helps scientists 
simulate molecules and predict new drug formulations, speeding up the research process.

‒ Data Augmentation: Generative AI creates synthetic data to augment datasets. This is 
especially useful in domains with limited data, like medical imaging or autonomous driving, 
where gathering real-world data can be expensive or impractical.

‒ Enhancing Human Creativity: By collaborating with generative AI, humans can push creative 
boundaries. Artists, musicians, and writers can use AI to inspire new ideas and explore creative 
spaces that might not be accessible otherwise.
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Overview of Generative AI Techniques

‒ Popular Techniques: GANs, VAEs, and Transformers. Each technique has unique approaches for handling data 
and generating new content.

‒ GANs (Generative Adversarial Networks): Two-part model structure with a generator that produces fake data and a 
discriminator that distinguishes between real and fake data.

‒ VAEs (Variational Autoencoders): Models that encode input data into a compressed latent space and then decode it 
back, useful for generating smooth variations of data.

‒ Transformers: Attention-based models that process sequential data, making them crucial for language-based 
generative tasks like text generation and translation.

‒ Other Techniques: Includes Markov Chains and Recurrent Neural Networks (RNNs), which were popular in early 
generative models but are now mostly outpaced by newer architectures like transformers.
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Key Terms in Generative AI

‒ Latent Space: A lower-dimensional space where data is represented in compressed 
form. Models like VAEs utilize this space for generating new variations of input data.

‒ Distribution Learning: Generative models learn the distribution of the training data, 
allowing them to sample from this learned distribution and create similar new data.

‒ Stochasticity: Randomness is introduced in the generation process to ensure diversity 
in the outputs. For example, GANs produce slightly different images each time due to 
this stochastic process.

‒ Decoder: In models like VAEs, the decoder is responsible for reconstructing the input 
from its latent representation, which helps in generating new variations of the input 
data.

8



University of Oulu

GenAI Examples
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Text Generation with Generative AI

‒ Text generation models take a prompt or starting text and expand 
upon it to generate human-like paragraphs, articles, or dialogues.

‒ It is primarily based on Transformer architectures, such as GPT-3, 
which use attention mechanisms to produce coherent and 
contextually relevant text.

‒ Applications includes content creation, customer service, digital 
marketing, and even creative writing. Text generation models can 
generate entire articles, answer questions, or simulate conversations 
in chatbots.
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Image Generation with Models like DALL-E

‒ Models are trained on large datasets of images and their 
corresponding descriptions. They can generate images from textual 
prompts by learning the relationship between text and images.

‒ Applications: Useful in fields like advertising, where brands can 
generate custom visuals for marketing campaigns, or in 
entertainment for creating concept art.

‒ DALL-E, a model that can create highly detailed and creative images 
based on complex prompts, such as “a futuristic cityscape at sunset.”
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Music Generation with Models like MuseNet

‒ AI can compose original music by learning the structure of 
musical compositions, such as chord progressions, rhythm, and 
melody.

‒ These models can aid composers in generating new pieces, 
assist musicians in ideation, or provide background music for 
video games and movies.

‒ MuseNet by OpenAI, which can generate music in various 
styles and instruments.
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Types of Generative 
Models
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Overview of Generative Models

‒ Definition: Generative models are designed to produce new instances that 
resemble the data they were trained on. Unlike discriminative models, which 
classify or label data, generative models create data based on learned 
patterns.

‒ Main Types: The three most widely used types of generative models are:

- Generative Adversarial Networks (GANs): Widely used for image and video generation.
- Variational Autoencoders (VAEs): Useful for data compression and anomaly detection.
- Transformers: Primarily used in natural language processing for text generation and translation.

‒ Other Types: Less common but foundational techniques include Markov 
Chains, which are probabilistic models, and Recurrent Neural Networks 
(RNNs), which handle sequential data but are less efficient than Transformers 
for large datasets.

14



University of Oulu

Large Language Models
Yeah! Now is the time to talk about it!
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Introduction to Large 
Language Model

‒ Large Language Models (LLMs) are 
advanced AI models trained on massive 
datasets of text to generate and understand 
human language. They can handle tasks such 
as answering questions, summarizing text, 
translating languages, and even coding.

‒ Popular Models:

- GPT-3 and GPT-4 by OpenAI: Known for generating 
coherent and contextually relevant text.

- BERT by Google: Excel in understanding the context 
within text, widely used in search engines.

- T5 by Google: Known for treating NLP tasks in a unified 
text-to-text format, making it versatile and adaptable.

- LLaMA: General Purpose, Open-Source LLM from Meta
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Limitations of LLMs

‒ Bias and Fairness: Since LLMs learn from vast amounts of text data, they can inherit and amplify biases present 
in the training data. This can lead to problematic outputs, such as biased language or stereotypes. Mitigating bias in 
LLMs remains an ongoing research challenge.

‒ Resource Intensive: Training LLMs requires substantial computational power and energy, which can be costly and 
have environmental impacts. As models become more complex, their resource demands increase, making it 
essential to find efficient training methods.

‒ Accuracy and Reliability: Although LLMs can generate coherent responses, they sometimes produce incorrect or 
misleading information. This is because LLMs need help understanding language; they predict the most likely next 
word based on patterns. Therefore, they are prone to factual inaccuracies, which can limit their use in critical 
applications.

‒ Interpretability: LLMs function as black boxes, meaning how they arrive at specific outputs is often unclear. This 
lack of interpretability can be problematic in fields like healthcare or law, where understanding the reasoning behind 
a decision is crucial.
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LLMs in SE
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Code Generation and Completion

‒ How It Works: LLMs like GitHub Copilot use a model trained on vast amounts of code 
to assist developers by suggesting lines of code, completing function definitions, or 
automating boilerplate code.

‒ Benefits for Developers:

- Time-Saving: Code completion speeds up the development process by reducing the need for typing and 
enabling developers to focus on more complex tasks.

- Error Reduction: LLMs can help identify common syntax or logic errors, improving code quality and reducing 
bugs in the final product.

- Learning Tool: Code generation tools can be educational, helping less experienced developers understand 
best practices and coding conventions.

‒ Limitations: While useful, LLM-generated code may contain security vulnerabilities, 
errors, or unconventional approaches. Developers must review and refine the 
generated code to ensure reliability and security.
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Code Review and Documentation

‒ Automating Code Reviews: LLMs can assist in code review by detecting potential issues, suggesting best 
practices, and providing feedback on code structure and readability. This can help maintain consistent quality 
across a codebase.

‒ Documentation Generation: LLMs can automatically generate documentation for functions, classes, and modules. 
They create comments or docstrings that make the code more understandable by analyzing code and identifying its 
purpose.

‒ Enhanced Collaboration: Automated documentation makes it easier for team members to understand each 
other’s code, improving collaboration.

‒ Improved Readability: Code comments and documentation clarify the intent behind complex code, aiding 
maintainability and simplifying future updates.

‒ While LLMs are powerful tools for generating code documentation, they may sometimes produce vague or 
inaccurate results if they misunderstand the code’s purpose. This underscores the importance of human oversight 
in ensuring that the documentation is clear and correct.
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Testing and Debugging with LLMs

‒ Automated Test Generation: LLMs can generate unit tests based on function definitions and expected outcomes, 
helping developers ensure that their code is thoroughly tested. For example, a model might generate multiple test 
cases for a sorting function, checking edge cases like empty or null inputs.

‒ Debugging Assistance: LLMs can analyze code and suggest possible reasons for errors. By identifying potential 
bugs and proposing fixes, they streamline the debugging process and reduce time spent troubleshooting.

‒ Increased Test Coverage: Automated test generation helps cover a wider range of scenarios, improving software 
reliability.

‒ Faster Debugging: LLMs provide insights into common errors and debugging tips, helping developers resolve 
issues more quickly.

‒ Limitations: While LLMs can assist in debugging, they may not always provide accurate suggestions for complex 
issues. Developers must use their expertise to validate and apply the model’s recommendations.
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Integrating LLMs into DevOps

‒ CI/CD Automation: LLMs can be integrated into Continuous Integration and Continuous Deployment (CI/CD) 
pipelines to perform code assessments, security checks, and compliance validation. This helps automate quality 
assurance and ensures that code meets organizational standards before deployment.

‒ Automated Code Assessments: LLMs can analyze code changes, detect potential vulnerabilities, and flag issues 
before they are merged into the main codebase. This reduces the risk of introducing bugs or security flaws into 
production.

‒ Streamlined Workflows: Automating repetitive tasks reduces manual work, enabling DevOps teams to focus on 
higher-level tasks.

‒ Improved Code Quality: Regular code assessments ensure that code is secure, compliant, and optimized for 
performance, reducing the likelihood of production issues.

‒ Challenges: Integrating LLMs into DevOps requires careful configuration to ensure that assessments are accurate 
and that the model’s recommendations align with organizational standards. Additionally, teams must monitor the 
LLM’s outputs to avoid false positives or missed issues.
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The Path Ahead
Few Hints ☺
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AI Libraries in OSS
Adoption and Impact on Development (1/2)

‒ Open Source Software (OSS) emerged in the 1980s as a 
revolutionary alternative to proprietary software.

‒ Artificial Intelligence (AI) is increasingly present in OSS projects.

‒ Assess the adoption of AI libraries in Python and Java OSS 
projects.

- Examine how AI libraries shape development in terms of:

- Technical Ecosystem - Community Engagement
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AI Libraries in OSS
Adoption and Impact on Development (2/2)

‒ Conducted a large-scale analysis of 6,323 OSS repositories.

‒ Scarce Adoption 

- AI libraries are not widely adopted in OSS projects.

‒ Enhanced Community Engagement:

- Projects with AI libraries show more issues, pull requests, commits, and forks.

‒ Complex Technical Ecosystem:

- Heightened dependency networks.

- Increased workflow proliferation.

26



University of Oulu

AI Libraries in OSS
Is AI Eating Software?

‒ Rapid integration of AI in software development brings opportunities and 
challenges.

‒ Technical debt is a critical issue affected by AI adoption.

‒ Investigate how AI usage contributes to or mitigates technical debt in OSS.

‒ Conduct an exploratory, large-scale analysis of GitHub projects.

‒ Focus on temporal trends and their impact on TD accumulation.
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AI Libraries in OSS
Impact of Technical Debt

‒ Rapid integration of AI in software development brings opportunities and 
challenges.

‒ Technical debt is a critical issue affected by AI adoption.

‒ Investigate how AI usage contributes to or mitigates technical debt in OSS.

‒ Conduct an exploratory, large-scale analysis of GitHub projects.

‒ Focus on temporal trends and their impact on TD accumulation.
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Generative AI
Evidence-Based Software Engineering

‒ Capabilities of Textual-GAI

- Allows researchers to explore new generative scenarios.

- Simplifies and accelerates time-consuming text generation and analysis tasks.

‒ Role of GAI in Evidence-Based Software Engineering

- Investigated and envisioned how GAI can support EBSE researchers.

- Working on empirically validating a comprehensive suite of models to effectively 

support EBSE researchers in managing literature reviews and data analysis.

05/12/202429 Advanced Methods for  Empir ical Software Engineering and Security in AI-driven System
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Generative AI
Security Risk Analysis of Mission Critical IT Systems (1/2)

‒ Mission Critical Risk Analysis is time consuming and knowledge-hungry

‒ Assess the effectiveness of Large Language Models (LLMs) in mission-critical 
risk analysis, particularly Retrieval-Augmented Generation (RAG) and fine-
tuned models.

‒ What we did:

- Data collected from 50+ mission-critical analyses over five years, totaling 1283 samples.

- LLMs (GPT-3.5, GPT-4, RAG and fine-tuned variations) vs. human experts in risk assessment.

- Human experts provided both analysis and review.

05/12/202430 Advanced Methods for  Empir ical Software Engineering and Security in AI-driven System
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Generative AI
Security Risk Analysis of Mission Critical IT Systems (2/2)

‒ Industrial Application:

- RAG models can enhance risk assessment in mission-critical systems by rapidly 
surfacing hidden risks.

- Fine-tuned LLMs are ideal for accuracy-focused scenarios.

‒ Future Work:

- Further exploration into improving LLM accuracy for broader risk analysis applications.
- Potential for training models on domain-specific countermeasures.

‒ Conclusion: 

- LLMs, particularly RAG models, offer valuable support in risk analysis by speeding up 
the process and uncovering risks missed by human experts.

05/12/202431 Advanced Methods for  Empir ical Software Engineering and Security in AI-driven System
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Generative AI
Governance of Mission Critical IT Systems (1/2)

‒ Critical infrastructure security (healthcare, telecommunications, military
coordination) is a fundamental concern, intensified by today’s cyber warfare
landscape.

‒ Importance of Mission-Critical Systems (MCSs):

- Protecting MCSs is vital for national security.

- These systems require prompt and comprehensive governance to ensure resilience.

‒ Challenges in Governance:

- Recent events have highlighted increasing difficulties in meeting the demands of MCS security
and governance.

05/12/202432 Advanced Methods for  Empir ical Software Engineering and Security in AI-driven System
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Generative AI
Governance of Mission Critical IT Systems (2/2)

‒ Insights and Recommendations:

- Interdisciplinary Collaboration is essential to safely integrate Large Language 
Models (LLMs) in MCS governance.

- Researchers should focus on designing regulation-oriented models with an 
emphasis on accountability.

- Practitioners should prioritize data protection and transparency.

- Policymakers must establish a unified AI framework with global benchmarks to 
ensure ethical and secure LLM-based MCS governance.

05/12/202433 Advanced Methods for  Empir ical Software Engineering and Security in AI-driven System
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Agentic AI
What?

‒ Autonomy: Empowers Generative AI to act and make 
decisions independently.

‒ Adaptability: Enables AI to interact with systems and 
adapt to changes.

‒ Efficiency: Creates self-managing systems that enhance 
performance and responsiveness.

05/12/202434 Advanced Methods for  Empir ical Software Engineering and Security in AI-driven System
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Agentic AI
Infrastructure as Code in DevSecOps (1/2)

‒ Computing is deeply integrated into our daily lives through smartphones, smart homes, 
and connected cars.

‒ There’s a growing demand for development automation strategies to meet tight 
release schedules and rapidly deliver software projects.

‒ No existing studies focus on using GAI to generate IaC scripts based on DevSecOps
stage artifacts.

‒ Different IaC tools require specific infrastructure setups for various project stages 
(testing, deployment, monitoring).

05/12/202435 Advanced Methods for  Empir ical Software Engineering and Security in AI-driven System
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Agentic AI
Infrastructure as Code in DevSecOps (2/2)

‒ Envisioned Solution:

- GAI models that utilize artifacts from each DevSecOps stage to create and refine IaC
scripts.

‒ Impact for Practitioners:

- Provides an automatic copilot for infrastructure design and deployment.

‒ Opportunities for Researchers:

- A foundation for further empirical validation.

- Potential to expand the possibilities enabled by this approach.

05/12/202436 Advanced Methods for  Empir ical Software Engineering and Security in AI-driven System
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Agentic AI
Autonomous Microservice Anomaly Detection and Remediation (1/2)

‒ Microeservices offer unparalleled scalability and independent deployment in cloud 
computing.

‒ Decentralized nature introduces significant security and management challenges.

‒ Potential threats to system stability due to complexity and distribution.

‒ Quick detection and remediation to anomalies still requires a highly trained expert

05/12/202437 Advanced Methods for  Empir ical Software Engineering and Security in AI-driven System
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Agentic AI
Autonomous Microservice Anomaly Detection and Remediation (2/2)

‒ Proposed Framework:

- Based on MAPE-K (Monitor, Analyze, Plan, Execute over a Knowledge base).

- Leverages Agentic AI for autonomous anomaly detection and remediation.

- Addresses the challenges of managing highly distributed systems.

‒ Practical, Industry-Ready Solutions:

- Maintains robust and secure microservices environments.

- Customizable skeleton allows practitioners to:

- Enhance system stability.

- Reduce downtime.

- Ensure continuous, efficient operations tailored to specific needs.

05/12/202438 Advanced Methods for  Empir ical Software Engineering and Security in AI-driven System
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